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Abstract

To support future manned missions to the surface of the Moon and Mars or

missions requiring manipulation of payloads and locomotion in space, a training device is

required to simulate the conditions of both partial and microgravity as compared to the

gravity on Earth. The focus of this paper is to present the development, construction, and

testing of a partial gravity simulator which uses a pneumatic actuator with closed loop

mechanical amplification.

Results of the testing show that this type of simulator maintains a constant partial

gravity simulation with a variation of the simulated body force between 2.2% and 10%,

depending on the type of locomotion inputs. The data collected using the simulator show

that mean stride frequencies at running speeds at lunar and martian gravity levels are 12%

less than those at Earth gravity. The data also show that foot/ground reaction forces at

lunar and martian gravity are, respectively, 62% and 51% less than those on Earth.
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1.0 Introduction

There are various methods by which partial gravity can be simulated in a one-g

Earth environment. Ideally, the simulator will maintain the proper response and motion

cues by allowing for unlimited degrees-of-freedom while keeping the subject isolated from

any external friction forces generated by the simulator and its associated ground support

equipment. The partial gravity simulator under development at the NASA Johnson Space

Center (JSC) that is presented in this paper uses a pneumatic actuator with closed loop

mechanical amplification. Pogo is the common term for the partial gravity simulator that

employs this method; this is the term that will be used throughout this paper. The purpose

of the paper is to provide details of the mechanical control and operation of the Pogo

vertical servo unit and to present the results of walking and running data collected at

reduced gravity levels.

The Pogo system is a combination of hardware salvaged from the partial gravity

simulator used during the Apollo Program and additions and upgrades made during current

system development and testing. Pogo consists of three major systems: the vertical servo

system, the display and control system, and the gimbal support system. The vertical servo

system, which is shown in Figure 1(a), provides control of the pneumatic actuator by using

servovalve amplifiers.

The vertical servo system and the gimbal support system and their principles of

operation will be described before presenting the experimental activities performed on

Pogo. The objectives of these activities include the following: to determine the pressure

and flow characteristics of the Pogo vertical servo, to test the Pogo response to human

locomotion inputs, to determine the error in maintaining partial gravity simulation, and to

compare biomechanic data collected on Pogo to results from other partial gravity simulation
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Figure 1(a). Pogo overall configuration.

(Adapted from Trader and Johnson [ l] and upgraded by Ray [2]. Oimbal support adapted

from NASA drawing SEY43116721, drawn by Brian Petty of the Johnson Engineering

Corporation.)
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methods. The biomechanic data include mean stride frequency versus gravity level and

mean peak foot reaction force versus gravity level.
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2.0 Vertical Servo System Description

The vertical servo system is the mechanism on Pogo which applies a constant lifting

force opposite to the direction of the Earth's gravity vector. The vertical servo system con-

sists of the vertical servo assembly, the cylinder assembly, and the piston rod assembly, as

shown in Figure 1(a). Lifting force is provided by supplying the cylinder with pressurized

air which is regulated by the vertical servo assembly. The current available air supply to

the vertical servo assembly has a maximum pressure of 120 psig (134.7 psia) and a

maximum flow rate of 367 scfm, which is found at standard laboratory conditions of

14.7 psia and 75°F (535°R).

2.1 Gimbal Support System

The gimbal support assembly is the structure a subject is placed on to provide the

rotational degrees-of-freedom of pitch, roll, and yaw. Figure 1(b) shows three views of a

subject in the gimbal support which is used for shirt-sleeve training exercises. The gimbal

support assembly of Figure 1(b) is constructed of aluminum for the structural members

and either nylon or kevlar webbing for the support straps. Kevlar is used for the main

support straps because of its excellent strength-to-weight ratio and because it does not

deflect as much as nylon under loaded conditions. Minimal deflection is important since

any forces stored in the straps, due to their elastic properties while deflecting under loaded

conditions, will adversely affect the partial gravity simulation. Once a subject is placed on

the seat support and strapped into the chest harness, adjustments are made to get the

subject's center of gravity to coincide with the pitch and roll axes of the gimbal. A full

360* rotational freedom is capable about the yaw axis.

4
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Figure l(b). Gimbal support assembly.

(Illustration by Ray, adapted from NASA drawing SEY43116721, drawn by Brian Petty of

the Johnson Engineering Corporation.)
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2.2 Vertical Servo Flow System Description

Maintaining stability in pneumatic systems is a problem when designing closed loop

pressure and flow controls. In transmissions of compressed air, harmonic oscillations or

whistles can be generated given certain flow conditions coupled with changing line diam-

eters, nozzles, and orifice restrictions. Such conditions are prevalent in the vertical servo

flow control system, which is shown schematically in Figure 2. According to Burrows

[3], "The main goal in designing a control system is to achieve adequate dynamic perform-

ance without the system becoming unstable." One of the design goals in developing a

stable control system for the vertical servo is to determine the best combinations of supply

pressure and flapper-nozzle control valve gap settings that result in stable performance of

the two-stage mechanical amplification feedback of the Pogo vertical servo.

The Pogo vertical servo is a pressure and flow regulating device in which the

amplification is error actuated. To be operated properly, the vertical servo needs to be a

fast responding regulator, where the desired lift force from the piston/cylinder lifting actu-

ator of Figure 1(a) is maintained constantly for a continuously varying input load at the end

of the actuator.

The first step in developing a stable operating control system is to define the

system. A control block diagram of the vertical servo flow control system is shown in

Figure 3.
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Figure 2. Vertical servo flow control system description.
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_0-_ Flapper _ Servo-

_. [control [ - [valves [

Vao

Supply to

cylinder

Pai : Input lifting pressure to the cylinder.

Pao : Instantaneous output to the cylinder.

e • Error signal

F b : Bias spring input force which deflects the flapper.

Pv : Pressure supply to vertical servo. _

Figure 3. con_ol block diagram for the two-stage vertical servo amplifier.

Figure 3 shows that the first stage of the vertical servo consists of the flapper-

nozzle control valve, and that the second stage consists of the intake and exhaust

servovalves. An instantaneous change in pressure Pao in the cylinder, due to subject

motion, is compared to the required input lifting pressure Pal for constant partial gravity

simulation. The result of this comparison is the error signal e. The error is amplified by

the flapper-nozzle control valve element Fb, which represents the influence of the bias

spring force of the vertical servo shown in Figure l(a). The flapper-nozzle controller in

turn affects the back pressure lab in the intake and exhaust servovalves, as seen in Figure 2.

The back pressure Pb is considerably less than the control pressure Pc, due to the orifice

restriction at the inlet to each servovalve control chamber. The servovalves act as a second
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stagepressureregulatingelement,whichfurtheramplifiestheerrorsignalandsuppliesthe

requiredpressurechangetothelifting cylinderto reducethedifferencebetweenPai and

Pao.

The flow control diagram in Figure 2 shows that the vertical servo acts basically as

a two-way flow and pressure regulator. The main supply of air flow enters the intake of

the valve chamber of the intake servovalve and is diverted in two different directions. One

direction is the inlet to the lifting cylinder, and the other direction is the inlet to the exhaust

servovalve. The amount of air flow going to either the cylinder or the exhaust is propor-

tional to the back pressure Pb, which varies according to the position of the flapper between

the control nozzles. The error signal e is directly proportional to the position of the flapper

between the control nozzles.
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3.0 Test Objectives

The objectives of the tests on the Pogo vertical servo are accomplished in two parts.

Part I is a static test dedicated to defining the pressure and flow characteristics of the

vertical servo flapper control valve. The change in pressure in the lines connecting the

intake and exhaust servovalves to the control nozzles is measured versus the gap between

the flapper and the nozzle. Changes in volume flow rate through the vertical servo using a

calibrated Venturi meter are also recorded. These pressure and flow readings are repeated

at various inlet supply pressures Pv, which would be required to provide lift for subjects of

various weights.

The objective of Part II of the tests is to determine the dynamic accuracy of the

simulator by measuring force versus time data from the Pogo load cell and a load cell which

measures foot/ground reaction forces. These data are collected with human test subjects

performing walking and running exercises at gravity levels of one g, 0.95g, 3/8g, and

l/6g. A profile of the test subjects is given in Table 1. These empirical data will be

analyzed and compared to results obtained by alternate partial gravity simulation methods.

Table 1. Profile of the Test Subjects Participating in the Pogo Tests

Test Subject Age

(ye_s)

Weight

(lb.)

Height

(in.)

Gender

DN 29 110 64 Female

ML 31 158 71 Male

BP 32 170 70 M_e

DR 28 176 73 M_e
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The configuration and test apparatus for both Parts I and 13 of the Pogo tests are

shown in Figure 4. The instrumentation for Part I is as follows:

A set of go/no-go feeler gauges to measure the gap in inches between the control

flapper and the nozzles.

Two pressure transducers to measure the control pressure to each servovalve Pc and

the pressure in the line to the flapper valve Pf.

A Venturi meter coupled with a strain gauge differential pressure transducer to mea-

sure the volume flow rate Q in scfm through the vertical servo. Venturi meter cali-

bration is obtained from the NASA JSC Calibration and Standards Laboratory.

The instrumentation for Part II of the tests is as follows:

A load cell connected to the end of the actuator piston rod for force measurements.

A treadmill with load cells in the platform to collect foot force data from human

locomotion inputs.

All the test instrumentation is connected to the data acquisition system, which con-

sists of the National Instrument SCXI- 1120 signal conditioning module and Lab-

PC analog to digital conversion card in an NEC 386/20 PC (personal computer).

The National Instrument NI-DAQ software package is used for viewing and

recording the real-time responses of the load cells.

11
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Figure 4. Pogo test configuration.
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4.0 Flapper Control Valve Pressure and Flow Curves

Figure 5 shows the static equilibrium pressure curves for the flapper-nozzle control

valve sensor. The figure depicts values of Pf (Pf is the pressure in the line connected to the

control chamber of the exhaust servovalve shown in Figure 4) as a function of the gap or

distance between the flapper and the nozzle. The static pressure curves are recorded at

various supply pressures to the vertical servo, which is depicted as Pv. The values chosen

for Pv vary between 25 and 50 psig. These values are chosen for Pv because they repre-

sent the range of pressures required to lift the various test subjects at the required simulated

gravity levels.

Figure 6 shows the flow rate Q through the vertical servo in scfm as a function of

the gap between the flapper and the control nozzle. The flow rates are also measured at

various supply pressures Pv. For each value of Q for a given Pv and gap setting in Figure

6, there is a corresponding value of Pf in Figure 5. Thus, each gap setting for a particular

value of Pv has a distinct value for Pf and Q.

The pressure versus gap curves in Figure 5 show that Pf decreases rapidly as the

gap increases from 0.002 to 0.004 in. for all values of Pv. Then the pressure remains

relatively constant to a gap of 0.006 in. It decreases again to a gap of 0.008 in. Data are

not collected for gap values greater that 0.008 in., since an increase in the gap beyond this

value creates excessive noise levels due to the exhausting air. Figure 6 shows the changes

in volume flow rate to be fairly constant from a gap of 0.000 to 0.003 in. for all values of

Pv, but then the volume flow rate increases rapidly from a gap of 0.003 to 0.008 in.

The information given in Figures 5 and 6 is used as a tool to develop the correct gap

settings of the flapper-nozzle control valve. The problem in determining the proper gap

setting for the control flapper deals with providing the proper pressure change in Pf, for a

given change in gap, while maintaining a certain flow rate through the servo to make up for

13
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Figure 6. Volume flow rate through the vertical servo as a function of the

flapper-nozzle gap at different supply pressures Pv.
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themovementof thepistonrod in theactuatorcylinder.After interpretingthedatain

Figures5 and6, thegap xe(fromFigure2) is setat0.004in. and xi is setat 0.008in.
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5.0 Simulator Response to Human Locomotion

The following results show the Pogo system response to human locomotion at

various gravity levels and the mean stride frequencies and mean peak foot forces of the test

subjects at these gravity levels. For the tests, the DelMar treadmill (Figure 4) is used on a

level surface. The treadmill has a variable speed from 0 to 10 mph. Speeds of 2 mph and

6.5 mph are used for the tests, where 2 mph is considered a walking speed and 6.5 mph is

considered a running speed.

Walking and running exercises are performed on the treadmill at gravity levels of

3/8g (martian gravity), l/6g (lunar gravity), and one g (Earth gravity). Figures 7(a)

through 7(p) show the results of the load cell time traces for each of the four test subjects

who were walking and running at l/6g and 3/8g using Pogo. Information on each test

subject can be found in Table 1.

Ideally, the force traces in Figures 7(a) through 7(p), which are designated "Pogo

Lift Force," should be constant over time and coincide with the dashed line designated

"Ref. Lift Force," which represents the force to be maintained to provide constant partial

gravity simulation. The force trace designated "Tread Force" represents the foot reaction

forces measured by the load cells in the treadmill platform.

The force versus time traces of Figures 7(a) through 7(p) show that the Pogo lift

force deviates from the constant reference lift force for each case. For some cases, the

Pogo lift force is fairly steady and consistent over the given time intervals, which can

include as many as 12 steps. For other cases, the Pogo lift force deviates frequently and is

discontinuous over the time intervals. For instance, Figure 7(b) shows that, for test subject

DN, the required lifting force is 158 lbf and the variation in Pogo lift force ranges from

152 to 158 lbf. For this case, the percent error, which is presented here as the percentage

of the ratio of the maximum deviation from the reference lifting force to the reference

16
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lifting force, is (158 Ibf-152 lbf)/158 lbfor 3.8%. Figure 7(f) shows that, for test subject

ML, the required reference lifting force is 200 lbf, and the variation in the Pogo lift force

ranges from 190 to 220 lbf. The percent error for this case is 20 lbf/200 lbf or 10%. The

percent error in maintaining partial gravity simulation for each test case is presented in

Table 2.

The discontinuities in the Pogo lift force for each case are not expected because the

flow through the vertical servo is a continuous process. However, discontinuities could be

caused by a number of factors. The supply pressure available from the facility is not con-

stant, and demands placed on the compressed air supply from other users can cause pres-

sure fluctuations. The poppets in the servovalves have precision clearances to provide for

air-beating surfaces. These surfaces can collect dirt and oil from the air supply and cause

the poppets to stick. If the poppets are not moving freely in a continuous manner, the

output to the lifting cylinder will not be continuous. Finally, the human locomotion inputs

cause lateral motions to be imparted to the lifting cylinder. These lateral motions can cause

deviations in the Pogo load cell readings because the load cell is designed and calibrated to

record pure tension forces. In some cases (Figures 7(f) and 7(n)), there are noticeable dis-

continuities in the Pogo lift force that correspond with noticeable differences in the peaks

between simultaneous tread force traces. In other cases (Figures 7(d) and 70)), the Pogo

lift force traces are fairly consistent when the peaks in simultaneous tread force traces are

also fairly steady and consistent.

Figures 8 and 9 present the mean results, with the standard deviations from the

mean, of the biomechanic data for the four test subjects who are walking and running at

different gravity levels. Figure 8 shows the mean stride frequency in strides/minute versus

gravity level. Figure 9 shows mean dimensionless peak force versus gravity level. Stride

frequency is calculated from tread force traces using the time it takes to put one foot down,

pick it up, and put it down again, which represents one stride period. Dimensionless
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Table2. PercentErrorin MaintainingPartialGravityLifting Force

(Percenterroris foundusingthemaximumdeviationfrom thereferencelifting force.)

Subject

DN

DN

DN

DN

ML

ML

ML

ML

BP

BP

BP

BP

DR

DR

DR

DR

G-level speed

1/6g2 mph

1/68 6.5mph

3/88 2mph

3/8g 6.5mph

1/68 2mph

1/68 6.5mph

3/8g 2 mph

3/8g 6.5mph

1/68 2 mph

1/68 6.5mph

3/8g 2mph

3/88 6.5mph

1/6g 2 mph

1/68 6.5mph

3/8g 2 mph

3/8g 6.5mph

Percenterror

5.0

3.8

7.1

6.4

6.0

10.0

3.1

3.1

2.5

2.4

9.1

2.9

4.0

7.3

6.7

2.2

peakforce is definedasmeasuredpeakforcedividedby thesubject'sweightatoneg.

Both Figures8 and9 containdatacollectedatgravity levelsof 1/6g,3/8g,0.95g,and

oneg wherethe0.95glevel representshumanlocomotionwhileconnectedto thegimbal

supportassembly.The0.95gdataarecollectedto determinehow thegimbal support
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affects human locomotion performance by comparing the 0.95g data to the one-g data,

where at one g the test subjects are not supported by the gimbal.

Figures 8 and 9 reveal that values for mean stride frequency and mean peak force

vary from the expected trend for running speeds at 0.95g, which indicates that the support

gimbal reduces human locomotion performance by increasing stride frequency and de-

creasing peak force. The data shown at 0.95g are expected because test subjects com-

mented that the gimbal limited their leg motion while running at 0.95g, which indicates

that, as the normal stride period decreases, stride frequency increases. The reduced stride

period also indicates less aerial time for each step, which reduces the potential energy of

each step and the mean peak force.

The data plotted in Figures 8 and 9 show that the support gimbal definitely adverse-

ly affects the expected stride frequency and peak force for the running speed of 6.5 mph at

0.95g. Now the results of the data in Figures 8 and 9 are compared to alternate partial

gravity simulation methods to determine the effects of the gimbal on stride frequency and

peak force at 1/6g and 3/8g. The results of Figures 8 and 9 are compared to the results

from Newman [4] using underwater immersion to simulate partial gravity, and with the

results from Hewes [5] using an inclined plane partial gravity simulator. Table 3 presents a

comparison of the mean stride frequency and dimensionless peak force results based on

percent reductions from the one-g data.

A comparison of results shown in Table 3 reveals some distinct discrepancies and

some similarities between the different methods of partial gravity simulation. For walking

speeds at l/6g, the results for percent reduction in stride frequency are very different. For

Pogo, there is no distinguishable difference between stride frequencies for the walking

speed at different gravity levels; therefore, a 0% reduction is listed. Underwater immersion

results from Newman [4] show a 26% reduction in stride frequency at 1.1 mph as opposed

to a 15% reduction from Hewes [5] at 2 mph using an inclined plane.
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Table3. PercentReductionof thePogoMeanStrideFrequencyandDimensionlessPeak

ForceResultsversusAlternatePartialGravitySimulationMethods

Sourceof

results

Ray

Newman[4]

Hewes[5]

Ray

Newman[4]

Hewes[5]

Ray

Newman[4]

Ray

Newman[4]

Gravitylevel

(g)

1/6

1/6

1/6

1/6

1/6

1/6

3/8

Speed

mph

1.1

2

6.5

5.13

Reduction in

stride freq. (%)

0

26

15

12

47

446.5

Reduction in

peak force (%)

50

76

N/A

62

76

N/A

3/8

3/8

3/8

0

1.1 21

6.5 12

5.13 36

44

68

51

52

The data for percent reduction in peak force are similar for Pogo and the underwater

immersion results, but peak force data from Hewes is not available for comparison. For

running speeds at 1/6g, Pogo results show a 62% reduction in peak force as compared to a

76% reduction from underwater immersion. For running speeds at 3/8g, Pogo shows a

51% reduction in peak force, which compares very well with a 52% reduction from

underwater immersion.

A comparison of the results in Table 3 definitely reveals that the percent reduction in

stride frequency for Pogo is less than expected. The cause of the lack of stride frequency

reduction is attributed to the effects of the gimbal support seat on leg motion. As described
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previouslyfor the0.95glevel in Figure8, thestridefrequencyisgreaterthanexpecteddue

to therestrictionof thegimbalsupportseat.A comparisonof theresultsin Table3 in-

dicatesthatthegimbalsupportseatalsocausesanincreasein stridefrequencyat lower

gravity levels. Therefore,thedatacollectionprocessusedto createFigures8and9 andthe

comparisonof resultsin Table3 provideamethodto testfuturemodificationsto thegimbal

supportwhichwouldallow for increasedleg motion.
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6.0 Summary and Conclusions

The results of the pressure and flow curves are very useful tools in developing

proper adjustments to the flapper-nozzle control valve before proceeding to conduct tests or

training exercises at partial gravity levels. Results of the Pogo lifting response to human

locomotion are very encouraging. The load cell force traces in Figures 7(a) through 7(p)

show that Pogo responds favorably to human locomotion inputs. Test results in Table 2

show that the Pogo performance, in the worse case, deviates a maximum of 10% from the

required constant lift force or constant partial gravity simulation. These results also show

that the error range in Pogo constant lift capabilities ranges from 10 to 2.2% depending on

the test subject, the type of locomotion, and the simulated gravity level. Therefore, the

Pogo vertical servo assembly is capable of providing partial gravity simulation within

acceptable error ranges.

A comparison of the results of stride frequency data from the Pogo simulator with

alternate methods of partial gravity simulation reveals significant differences. These dif-

ferences are attributed to restrictions imposed by the gimbal support on normal leg motion.

The data collected and the procedures established, however, allow for testing of future

modifications and changes to the gimbal to reduce these restrictions.

In conclusion, the advantages and disadvantages and the future of the Pogo

pneumatic actuator with closed loop mechanical amplification are presented. The major

advantage of the Pogo simulator is that there is no time limit on the duration of simulation.

During recent tests conducted on Pogo, former astronaut John Young commented that he

ran 13.6 miles on the simulator when it was operational during the Apollo Program. An-

other advantage is that the percent error obtained in constant lift from the vertical servo is as

low as 2.2% in some cases. Current disadvantages in using Pogo pertain to the gimbal

support assembly. The gimbal support seat is uncomfortable and restricts normal stride
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motions. Another disadvantage is that arms and legs do not experience partial gravity

weight alleviation. Finally, the data presented will definitely be used in the future to

support partial gravity and microgravity training and physiological studies for NASA

manned missions in orbiting Space Stations or lunar and Mars missions. The research

conducted can be used to develop higher fidelity simulators with additional degrees-of-

freedom and to develop heavy lift simulators to provide partial gravity simulation for

spacecraft and payloads of various sizes.
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